Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Cell Physiol ; 238(1): 179-194, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436185

RESUMO

Hemogenic endothelial (HE) cells are specialized endothelial cells to give rise to hematopoietic stem/progenitor cells during hematopoietic development. The underlying mechanisms that regulate endothelial-to-hematopoietic transition (EHT) of human HE cells are not fully understand. Here, we identified platelet endothelial aggregation receptor-1 (PEAR1) as a novel regulator of early hematopoietic development in human pluripotent stem cells (hPSCs). We found that the expression of PEAP1 was elevated during hematopoietic development. A subpopulation of PEAR1+ cells overlapped with CD34+ CD144+ CD184+ CD73- arterial-type HE cells. Transcriptome analysis by RNA sequencing indicated that TAL1/SCL, GATA2, MYB, RUNX1 and other key transcription factors for hematopoietic development were mainly expressed in PEAR1+ cells, whereas the genes encoding for niche-related signals, such as fibronectin, vitronectin, bone morphogenetic proteins and jagged1, were highly expressed in PEAR1- cells. The isolated PEAR1+ cells exhibited significantly greater EHT capacity on endothelial niche, compared with the PEAR1- cells. Colony-forming unit (CFU) assays demonstrated the multilineage hematopoietic potential of PEAR1+ -derived hematopoietic cells. Furthermore, PEAR1 knockout in hPSCs by CRISPR/Cas9 technology revealed that the hematopoietic differentiation was impaired, resulting in decreased EHT capacity, decreased expression of hematopoietic-related transcription factors, and increased expression of niche-related signals. In summary, this study revealed a novel role of PEAR1 in balancing intrinsic and extrinsic signals for early hematopoietic fate decision.


Assuntos
Hemangioblastos , Hematopoese , Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes , Receptores de Superfície Celular , Humanos , Diferenciação Celular , Hemangioblastos/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Pluripotentes/citologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição/metabolismo
2.
Sci Adv ; 7(36): eabi9787, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516916

RESUMO

Hematopoietic differentiation of human pluripotent stem cells (hPSCs) requires orchestration of dynamic cell and gene regulatory networks but often generates blood cells that lack natural function. Here, we performed extensive single-cell transcriptomic analyses to map fate choices and gene expression patterns during hematopoietic differentiation of hPSCs and showed that oxidative metabolism was dysregulated during in vitro directed differentiation. Applying hypoxic conditions at the stage of endothelial-to-hematopoietic transition in vitro effectively promoted the development of arterial specification programs that governed the generation of hematopoietic progenitor cells (HPCs) with functional T cell potential. Following engineered expression of the anti-CD19 chimeric antigen receptor, the T cells generated from arterial endothelium-primed HPCs inhibited tumor growth both in vitro and in vivo. Collectively, our study provides benchmark datasets as a resource to further understand the origins of human hematopoiesis and represents an advance in guiding in vitro generation of functional T cells for clinical applications.

3.
J Clin Microbiol ; 59(12): e0118621, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34469185

RESUMO

Serologic point-of-care tests to detect antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are an important tool in the COVID-19 pandemic. The majority of current point-of-care antibody tests developed for SARS-CoV-2 rely on lateral flow assays, but these do not offer quantitative information. To address this, we developed a novel antibody test leveraging hemagglutination, employing a dry card format currently used for typing ABO blood groups. Two hundred COVID-19 patient and 200 control plasma samples were reconstituted with O-negative red blood cells (RBCs) to form whole blood and added to dried viral-antibody fusion protein, followed by a stirring step and a tilting step, 3-min incubation, and a second tilting step. The sensitivities of the hemagglutination test, Euroimmun IgG enzyme-linked immunosorbent assay (ELISA), and receptor binding domain (RBD)-based CoronaChek lateral flow assay were 87.0%, 86.5%, and 84.5%, respectively, using samples obtained from recovered COVID-19 individuals. Testing prepandemic samples, the hemagglutination test had a specificity of 95.5%, compared to 97.3% and 98.9% for the ELISA and CoronaChek, respectively. A distribution of agglutination strengths was observed in COVID-19 convalescent-phase plasma samples, with the highest agglutination score (4) exhibiting significantly higher neutralizing antibody titers than weak positives (2) (P < 0.0001). Strong agglutinations were observed within 1 min of testing, and this shorter assay time also increased specificity to 98.5%. In conclusion, we developed a novel rapid, point-of-care RBC agglutination test for the detection of SARS-CoV-2 antibodies that can yield semiquantitative information on neutralizing antibody titer in patients. The 5-min test may find use in determination of serostatus prior to vaccination, postvaccination surveillance, and travel screening.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Hemaglutinação , Testes de Hemaglutinação , Humanos , Pandemias , Sistemas Automatizados de Assistência Junto ao Leito , Sensibilidade e Especificidade
4.
Gastrointest Endosc ; 94(6): 1119-1130.e4, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34197834

RESUMO

BACKGROUND AND AIMS: Gene therapy could provide curative therapies to many inherited monogenic liver diseases. Clinical trials have largely focused on adeno-associated viruses (AAVs) for liver gene delivery. These vectors, however, are limited by small packaging size, capsid immune responses, and inability to redose. As an alternative, nonviral, hydrodynamic injection through vascular routes can successfully deliver plasmid DNA (pDNA) into mouse liver but has achieved limited success in large animal models. METHODS: We explored hydrodynamic delivery of pDNA through the biliary system into the liver of pigs using ERCP and a power injector to supply hydrodynamic force. Human factor IX (hFIX), deficient in hemophilia B, was used as a model gene therapy. RESULTS: Biliary hydrodynamic injection was well tolerated without significant changes in vital signs, liver enzymes, hematology, or histology. No off-target pDNA delivery to other organs was detected by polymerase chain reaction. Immunohistochemistry revealed that 50.19% of the liver stained positive for hFIX after hydrodynamic injection at 5.5 mg pDNA, with every hepatic lobule in all liver lobes demonstrating hFIX expression. hFIX-positive hepatocytes were concentrated around the central vein, radiating outward across all 3 metabolic zones. Biliary hydrodynamic injection in pigs resulted in significantly higher transfection efficiency than mouse vascular hydrodynamic injection at matched pDNA per liver weight dose (32.7%-51.9% vs 18.9%, P < .0001). CONCLUSIONS: Biliary hydrodynamic injection using ERCP can achieve higher transfection efficiency into hepatocytes compared with AAVs at magnitudes of less cost in a clinically relevant human-sized large animal. This technology may serve as a platform for gene therapy of human liver diseases.


Assuntos
Sistema Biliar , Hidrodinâmica , Animais , Técnicas de Transferência de Genes , Terapia Genética , Fígado , Camundongos , Suínos
5.
medRxiv ; 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33972952

RESUMO

Serologic, point-of-care tests to detect antibodies against SARS-CoV-2 are an important tool in the COVID-19 pandemic. The majority of current point-of-care antibody tests developed for SARS-CoV-2 rely on lateral flow assays, but these do not offer quantitative information. To address this, we developed a new method of COVID-19 antibody testing employing hemagglutination tested on a dry card, similar to that which is already available for rapid typing of ABO blood groups. A fusion protein linking red blood cells (RBCs) to the receptor-binding domain (RBD) of SARS-CoV-2 spike protein was placed on the card. 200 COVID-19 patient and 200 control plasma samples were reconstituted with O-negative RBCs to form whole blood and added to the dried protein, followed by a stirring step and a tilting step, 3-minute incubation, and a second tilting step. The sensitivity for the hemagglutination test, Euroimmun IgG ELISA test and RBD-based CoronaChek lateral flow assay was 87.0%, 86.5%, and 84.5%, respectively, using samples obtained from recovered COVID-19 individuals. Testing pre-pandemic samples, the hemagglutination test had a specificity of 95.5%, compared to 97.3% and 98.9% for the ELISA and CoronaChek, respectively. A distribution of agglutination strengths was observed in COVID-19 convalescent plasma samples, with the highest agglutination score (4) exhibiting significantly higher neutralizing antibody titers than weak positives (2) (p<0.0001). Strong agglutinations were observed within 1 minute of testing, and this shorter assay time also increased specificity to 98.5%. In conclusion, we developed a novel rapid, point-of-care RBC agglutination test for the detection of SARS-CoV-2 antibodies that can yield semi-quantitative information on neutralizing antibody titer in patients. The five-minute test may find use in determination of serostatus prior to vaccination, post-vaccination surveillance and travel screening.

6.
J Thromb Haemost ; 19(7): 1783-1799, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33829634

RESUMO

BACKGROUND: There is interest in deriving megakaryocytes (MKs) from pluripotent stem cells (iPSC) for biological studies. We previously found that genomic structural integrity and genotype concordance is maintained in iPSC-derived MKs. OBJECTIVE: To establish a comprehensive dataset of genes and proteins expressed in iPSC-derived MKs. METHODS: iPSCs were reprogrammed from peripheral blood mononuclear cells (MNCs) and MKs were derived from the iPSCs in 194 healthy European American and African American subjects. mRNA was isolated and gene expression measured by RNA sequencing. Protein expression was measured in 62 of the subjects using mass spectrometry. RESULTS AND CONCLUSIONS: MKs expressed genes and proteins known to be important in MK and platelet function and demonstrated good agreement with previous studies in human MKs derived from CD34+ progenitor cells. The percent of cells expressing the MK markers CD41 and CD42a was consistent in biological replicates, but variable across subjects, suggesting that unidentified subject-specific factors determine differentiation of MKs from iPSCs. Gene and protein sets important in platelet function were associated with increasing expression of CD41/42a, while those related to more basic cellular functions were associated with lower CD41/42a expression. There was differential gene expression by the sex and race (but not age) of the subject. Numerous genes and proteins were highly expressed in MKs but not known to play a role in MK or platelet function; these represent excellent candidates for future study of hematopoiesis, platelet formation, and/or platelet function.


Assuntos
Células-Tronco Pluripotentes Induzidas , Plaquetas , Diferenciação Celular , Genômica , Humanos , Leucócitos Mononucleares , Megacariócitos
7.
PLoS One ; 16(4): e0249931, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33909609

RESUMO

The biliary system is routinely accessed for clinical purposes via endoscopic retrograde cholangiopancreatography (ERCP). We previously pioneered ERCP-mediated hydrodynamic injection in large animal models as an innovative gene delivery approach for monogenic liver diseases. However, the procedure poses potential safety concerns related mainly to liver or biliary tree injury. Here, we sought to further define biliary hydrodynamic injection parameters that are well-tolerated in a human-sized animal model. ERCP was performed in pigs, and hydrodynamic injection carried out using a novel protocol to reduce duct wall stress. Each pig was subjected to multiple repeated injections to expedite testing and judge tolerability. Different injection parameters (volume, flow rate) and injection port diameters were tested. Vital signs were monitored throughout the procedure, and liver enzyme panels were collected pre- and post-procedure. Pigs tolerated repeated biliary hydrodynamic injections with only occasional, mild, isolated elevation in aspartate aminotransferase (AST), which returned to normal levels within one day post-injection. All other liver tests remained unchanged. No upper limit of volume tolerance was reached, which suggests the biliary tree can readily transmit fluid into the vascular space. Flow rates up to 10 mL/sec were also tolerated with minimal disturbance to vital signs and no anatomic rupture of bile ducts. Measured intrabiliary pressure was up to 150 mmHg, and fluid-filled vesicles were induced in liver histology at high flow rates, mimicking the changes in histology observed in mouse liver after hydrodynamic tail vein injection. Overall, our investigations in a human-sized pig liver using standard clinical equipment suggest that ERCP-guided hydrodynamic injection will be safely tolerated in patients. Future investigations will interrogate if higher flow rates and pressure mediate higher DNA delivery efficiencies.


Assuntos
Sistema Biliar/fisiologia , DNA/administração & dosagem , Terapia Genética/métodos , Hidrodinâmica , Animais , Aspartato Aminotransferases/sangue , Bilirrubina/sangue , Pressão Sanguínea , Colangiopancreatografia Retrógrada Endoscópica , Frequência Cardíaca , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Suínos
8.
Cell Prolif ; 54(4): e13012, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33656760

RESUMO

OBJECTIVES: Vitronectin (VTN) has been widely used for the maintenance and expansion of human pluripotent stem cells (hPSCs) as feeder-free conditions. However, the effect of VTN on hPSC differentiation remains unclear. Here, we investigated the role of VTN in early haematopoietic development of hPSCs. MATERIALS AND METHODS: A chemically defined monolayer system was applied to study the role of different matrix or basement membrane proteins in haematopoietic development of hPSCs. The role of integrin signalling in VTN-mediated haematopoietic differentiation was investigated by integrin antagonists. Finally, small interfering RNA was used to knock down integrin gene expression in differentiated cells. RESULTS: We found that the haematopoietic differentiation of hPSCs on VTN was far more efficient than that on Matrigel that is also often used for hPSC culture. VTN promoted the fate determination of endothelial-haematopoietic lineage during mesoderm development to generate haemogenic endothelium (HE). Moreover, we demonstrated that the signals through αvß3 and αvß5 integrins were required for VTN-promoted haematopoietic differentiation. Blocking αvß3 and αvß5 integrins by the integrin antagonists impaired the development of HE, but not endothelial-to-haematopoietic transition (EHT). Finally, both αvß3 and αvß5 were confirmed acting synergistically for early haematopoietic differentiation by knockdown the expression of αv, ß3 or ß5. CONCLUSION: The established VTN-based monolayer system of haematopoietic differentiation of hPSCs presents a valuable platform for further investigating niche signals involved in human haematopoietic development.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Integrina alfaVbeta3/metabolismo , Receptores de Vitronectina/metabolismo , Vitronectina/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Integrina alfaVbeta3/antagonistas & inibidores , Integrina alfaVbeta3/genética , Mesoderma/citologia , Mesoderma/crescimento & desenvolvimento , Mesoderma/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de Vitronectina/antagonistas & inibidores , Receptores de Vitronectina/genética , Transdução de Sinais/efeitos dos fármacos , Venenos de Serpentes/farmacologia
9.
Biochem Biophys Res Commun ; 553: 165-171, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33773139

RESUMO

The COVID-19 pandemic has caused significant morbidity and mortality. There is an urgent need for serological tests to detect antibodies against SARS-CoV-2, which could be used to assess past infection, evaluate responses to vaccines in development, and determine individuals who may be protected from future infection. Current serological tests developed for SARS-CoV-2 rely on traditional technologies such as enzyme-linked immunosorbent assays (ELISA) and lateral flow assays, which have not scaled to meet the demand of hundreds of millions of antibody tests so far. Herein, we present an alternative method of antibody testing that depends on one protein reagent being added to patient serum/plasma or whole blood with direct, visual readout. Two novel fusion proteins, RBD-2E8 and B6-CH1-RBD, were designed to bind red blood cells (RBCs) via a single-chain variable fragment (scFv), thereby displaying the receptor-binding domain (RBD) of SARS-CoV-2 spike protein on the surface of RBCs. Mixing mammalian-derived RBD-2E8 and B6-CH1-RBD with convalescent COVID-19 patient serum and RBCs led to visible hemagglutination, indicating the presence of antibodies against SARS-CoV-2 RBD. B6-CH1-RBD made in bacteria was not as effective in inducing agglutination, indicating better recognition of RBD epitopes from mammalian cells. Given that our hemagglutination test uses methods routinely used in hospital clinical labs across the world for blood typing, we anticipate the test can be rapidly deployed at minimal cost. We anticipate our hemagglutination assay may find extensive use in low-resource settings for detecting SARS-CoV-2 antibodies.


Assuntos
Anticorpos Antivirais/análise , Anticorpos Antivirais/imunologia , Teste Sorológico para COVID-19/métodos , COVID-19/sangue , COVID-19/imunologia , Testes de Hemaglutinação/métodos , Sistemas Automatizados de Assistência Junto ao Leito , SARS-CoV-2/imunologia , Antígenos Virais/imunologia , COVID-19/diagnóstico , COVID-19/virologia , Teste Sorológico para COVID-19/economia , Eritrócitos/imunologia , Testes de Hemaglutinação/economia , Humanos , Sistemas Automatizados de Assistência Junto ao Leito/economia , Proteínas Recombinantes de Fusão/imunologia , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores de Tempo
10.
Blood ; 137(7): 959-968, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33094331

RESUMO

Genome-wide association studies have identified common variants associated with platelet-related phenotypes, but because these variants are largely intronic or intergenic, their link to platelet biology is unclear. In 290 normal subjects from the GeneSTAR Research Study (110 African Americans [AAs] and 180 European Americans [EAs]), we generated whole-genome sequence data from whole blood and RNA sequence data from extracted nonribosomal RNA from 185 induced pluripotent stem cell-derived megakaryocyte (MK) cell lines (platelet precursor cells) and 290 blood platelet samples from these subjects. Using eigenMT software to select the peak single-nucleotide polymorphism (SNP) for each expressed gene, and meta-analyzing the results of AAs and EAs, we identify (q-value < 0.05) 946 cis-expression quantitative trait loci (eQTLs) in derived MKs and 1830 cis-eQTLs in blood platelets. Among the 57 eQTLs shared between the 2 tissues, the estimated directions of effect are very consistent (98.2% concordance). A high proportion of detected cis-eQTLs (74.9% in MKs and 84.3% in platelets) are unique to MKs and platelets compared with peak-associated SNP-expressed gene pairs of 48 other tissue types that are reported in version V7 of the Genotype-Tissue Expression Project. The locations of our identified eQTLs are significantly enriched for overlap with several annotation tracks highlighting genomic regions with specific functionality in MKs, including MK-specific DNAse hotspots, H3K27-acetylation marks, H3K4-methylation marks, enhancers, and superenhancers. These results offer insights into the regulatory signature of MKs and platelets, with significant overlap in genes expressed, eQTLs detected, and enrichment within known superenhancers relevant to platelet biology.


Assuntos
Plaquetas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Megacariócitos/metabolismo , RNA/genética , Transcriptoma , Adulto , População Negra/genética , Plaquetas/citologia , Células Cultivadas , Feminino , Ontologia Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Megacariócitos/citologia , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , RNA/biossíntese , RNA-Seq , População Branca/genética , Sequenciamento Completo do Genoma
11.
J Cell Physiol ; 235(9): 6257-6267, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31994198

RESUMO

Ischemic heart disease and congestive heart failure are major contributors to high morbidity and mortality. Approximately 1.5 million cases of myocardial infarction occur annually in the United States; the yearly incidence rate is approximately 600 cases per 100,000 people. Although significant progress to improve the survival rate has been made by medications and implantable medical devices, damaged cardiomyocytes are unable to be recovered by current treatment strategies. After almost two decades of research, stem cell therapy has become a very promising approach to generate new cardiomyocytes and enhance the function of the heart. Along with clinical trials with stem cells conducted in cardiac regeneration, concerns regarding safety and potential risks have emerged. One of the contentious issues is the electrical dysfunctions of cardiomyocytes and cardiac arrhythmia after stem cell therapy. In this review, we focus on the cell sources currently used for stem cell therapy and discuss related arrhythmogenic risk.


Assuntos
Arritmias Cardíacas/patologia , Doenças Cardiovasculares/terapia , Miócitos Cardíacos/transplante , Transplante de Células-Tronco/efeitos adversos , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/terapia , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/patologia , Humanos , Fatores de Risco
13.
J Cell Physiol ; 234(9): 16136-16147, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30740687

RESUMO

Distinct regions of the primitive streak (PS) have diverse potential to differentiate into several tissues, including the hematopoietic lineage originated from the posterior region of PS. Although various signaling pathways have been identified to promote the development of PS and its mesoderm derivatives, there is a large gap in our understanding of signaling pathways that regulate the hematopoietic fate of PS. Here, we defined the roles of Wnt, activin, and bone morphogenetic protein (BMP) signaling pathways in generating hematopoietic-fated PS from human pluripotent stem cells (hPSCs). We found that the synergistic balance of these signaling pathways was crucial for controlling the PS fate determination towards hematopoietic lineage via mesodermal progenitors. Although the induction of PS depends largely on the Wnt and activin signaling, the PS generated without BMP4 lacks the hematopoietic potential, indicating that the BMP signaling is necessary for the PS to acquire hematopoietic property. Appropriate levels of Wnt signaling is crucial for the development of PS and its specification to the hematopoietic lineage. Although the development of PS is less sensitive to activin or BMP signaling, the fate of PS to mesoderm progenitors and subsequent hematopoietic lineage is determined by appropriate levels of activin or BMP signaling. Collectively, our study demonstrates that Wnt, activin, and BMP signaling pathways play cooperative and distinct roles in regulating the fate determination of PS for hematopoietic development. Our understanding of the regulatory networks of hematopoietic-fated PS would provide important insights into early hematopoietic patterning and possible guidance for generating functional hematopoietic cells from hPSCs in vitro.

14.
Stem Cells Transl Med ; 6(2): 589-600, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28191769

RESUMO

Transplantation of vascular cells derived from human pluripotent stem cells (hPSCs) offers an attractive noninvasive method for repairing the ischemic tissues and for preventing the progression of vascular diseases. Here, we found that in a serum-free condition, the proliferation rate of hPSC-derived endothelial cells is quickly decreased, accompanied with an increased cellular senescence, resulting in impaired gene expression of endothelial nitric oxide synthase (eNOS) and impaired vessel forming capability in vitro and in vivo. To overcome the limited expansion of hPSC-derived endothelial cells, we screened small molecules for specific signaling pathways and found that inhibition of transforming growth factor-ß (TGF-ß) signaling significantly retarded cellular senescence and increased a proliferative index of hPSC-derived endothelial cells. Inhibition of TGF-ß signaling extended the life span of hPSC-derived endothelial and improved endothelial functions, including vascular network formation on Matrigel, acetylated low-density lipoprotein uptake, and eNOS expression. Exogenous transforming growth factor-ß1 increased the gene expression of cyclin-dependent kinase inhibitors, p15Ink4b , p16Ink4a , and p21CIP1 , in endothelial cells. Conversely, inhibition of TGF-ß reduced the gene expression of p15Ink4b , p16Ink4a , and p21CIP1 . Our findings demonstrate that the senescence of newly generated endothelial cells from hPSCs is mediated by TGF-ß signaling, and manipulation of TGF-ß signaling offers a potential target to prevent vascular aging. Stem Cells Translational Medicine 2017;6:589-600.


Assuntos
Benzamidas/farmacologia , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Dioxóis/farmacologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Linhagem Celular , Meios de Cultura Livres de Soro/metabolismo , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Modelos Animais de Doenças , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/transplante , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/transplante , Humanos , Isquemia/genética , Isquemia/metabolismo , Isquemia/fisiopatologia , Isquemia/cirurgia , Lipoproteínas LDL/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Neovascularização Fisiológica , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Fenótipo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
15.
J Cell Physiol ; 232(12): 3261-3272, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28079253

RESUMO

The lineage transition between epithelium and mesenchyme is a process known as epithelial-mesenchymal transition (EMT), by which polarized epithelial cells lose their adhesion property and obtain mesenchymal cell phenotypes. EMT is a biological process that is often involved in embryogenesis and diseases, such as cancer invasion and metastasis. The EMT and the reverse process, mesenchymal-epithelial transition (MET), also play important roles in stem cell differentiation and de-differentiation (or reprogramming). In this review, we will discuss current research progress of EMT in embryonic development, cellular differentiation and reprogramming, and cancer progression, all of which are representative models for researches of stem cell biology in normal and in diseases. Understanding of EMT and MET may help to identify specific markers to distinguish normal stem cells from cancer stem cells in future.


Assuntos
Diferenciação Celular , Transformação Celular Neoplásica , Transição Epitelial-Mesenquimal , Células-Tronco/citologia , Animais , Reprogramação Celular , Humanos
16.
PLoS One ; 12(1): e0167794, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28107356

RESUMO

Previously, we have described our feeder-free, xeno-free approach to generate megakaryocytes (MKs) in culture from human induced pluripotent stem cells (iPSCs). Here, we focus specifically on the integrity of these MKs using: (1) genotype discordance between parent cell DNA to iPSC cell DNA and onward to the differentiated MK DNA; (2) genomic structural integrity using copy number variation (CNV); and (3) transcriptomic signatures of the derived MK lines compared to the iPSC lines. We detected a very low rate of genotype discordance; estimates were 0.0001%-0.01%, well below the genotyping error rate for our assay (0.37%). No CNVs were generated in the iPSCs that were subsequently passed on to the MKs. Finally, we observed highly biologically relevant gene sets as being upregulated in MKs relative to the iPSCs: platelet activation, blood coagulation, megakaryocyte development, platelet formation, platelet degranulation, and platelet aggregation. These data strongly support the integrity of the derived MK lines.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Megacariócitos/citologia , Transcriptoma , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Megacariócitos/metabolismo
17.
J Cell Physiol ; 231(5): 1065-76, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26395760

RESUMO

Generation of fully functional hematopoietic multipotent progenitor (MPP) cells from human pluripotent stem cells (hPSCs) has a great therapeutic potential to provide an unlimited cell source for treatment of hematological disorders. We previously demonstrated that CD34(+) CD31(+) CD144(+) population derived from hPSCs contain hemato-endothelial progenitors (HEPs) that give rise to hematopoietic and endothelial cells. Here, we report a differentiation system to generate definitive hematopoietic MPP cells from HEPs via endothelial monolayer. In the presence of angiogenic factors, HEPs formed an endothelial monolayer, from which hematopoietic clusters emerged through the process of endothelial-to-hematopoietic transition (EHT). EHT was significantly enhanced by hematopoietic growth factors. The definitive MPP cells generated from endothelial monolayer were capable of forming multilineage hematopoietic colonies, giving rise to T lymphoid cells, and differentiating into enucleated erythrocytes. Emergence of hematopoietic cells from endothelial monolayer occurred transiently. Hematopoietic potential was lost during prolonged culture of HEPs in endothelial growth conditions. Our study demonstrated that CD34(+) CD31(+) CD144(+) HEPs gave rise to hematopoietic MPP cells via hemogenic endothelial cells that exist transiently. The established differentiation system provides a platform for future investigation of regulatory factors involved in de novo generation of hematopoietic MPP cells and their applications in transplantation.


Assuntos
Células Endoteliais/citologia , Hematopoese , Células-Tronco Multipotentes/citologia , Células-Tronco Pluripotentes/citologia , Antígenos CD/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Eritroides/citologia , Células Eritroides/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células-Tronco Multipotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos
18.
J Cell Biochem ; 116(12): 2735-43, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26012423

RESUMO

Patient-specific human induced-pluripotent stem cells (hiPSCs) represent important cell sources to treat patients with acquired blood disorders. To realize the therapeutic potential of hiPSCs, it is crucial to understand signals that direct hiPSC differentiation to a hematopoietic lineage fate. Our previous study demonstrated that CD34(+)CD31(+) cells derived from human pluripotent stem cells (hPSCs) contain hemato-endothelial progenitors (HEPs) that give rise to hematopoietic cells and endothelial cells. Here, we established a serum-free and feeder-free system to induce the differentiation of hPSC-derived CD34(+)CD31(+) progenitor cells to erythroid cells. We show that extracellular matrix (ECM) proteins promote the differentiation of CD34(+)CD31(+) progenitor cells into CD235a(+) erythroid cells through CD41(+)CD235a(+) megakaryocyte-erythroid progenitors (MEP). Erythropoietin (EPO) is a predominant factor for CD34(+)CD31(+) progenitor differentiation to erythroid cells, whereas transforming growth factor beta (TGF-ß) inhibits the development of CD34(+)CD31(+) progenitor cells. Apoptosis of progenitor cells is induced by TGF-ß in early erythroid differentiation. Suppression of TGF-ß signaling by SB431542 at early stage of CD34(+)CD31(+) progenitor differentiation induces the erythroid cell generation. Together, these findings suggest that TGF-ß suppression and EPO stimulation promote erythropoiesis of CD34(+)CD31(+) progenitor cells derived from hPSCs.


Assuntos
Células Eritroides/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Eritropoetina/antagonistas & inibidores , Células-Tronco Pluripotentes/metabolismo , Fator de Crescimento Transformador beta/antagonistas & inibidores , Antígenos CD34/metabolismo , Benzamidas/administração & dosagem , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem da Célula/efeitos dos fármacos , Dioxóis/administração & dosagem , Células Eritroides/citologia , Eritropoetina/genética , Células-Tronco Hematopoéticas/citologia , Humanos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/transplante , Fator de Crescimento Transformador beta/genética
19.
J Cell Biochem ; 116(7): 1179-89, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25740540

RESUMO

Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), provide a new cell source for regenerative medicine, disease modeling, drug discovery, and preclinical toxicity screening. Understanding of the onset and the sequential process of hematopoietic cells from differentiated hPSCs will enable the achievement of personalized medicine and provide an in vitro platform for studying of human hematopoietic development and disease. During embryogenesis, hemogenic endothelial cells, a specified subset of endothelial cells in embryonic endothelium, are the primary source of multipotent hematopoietic stem cells. In this review, we discuss current status in the generation of multipotent hematopoietic stem and progenitor cells from hPSCs via hemogenic endothelial cells. We also review the achievements in direct reprogramming from non-hematopoietic cells to hematopoietic stem and progenitor cells. Further characterization of hematopoietic differentiation in hPSCs will improve our understanding of blood development and expedite the development of hPSC-derived blood products for therapeutic purpose.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Multipotentes/citologia , Diferenciação Celular , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Multipotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Medicina de Precisão , Transdução de Sinais
20.
Stem Cells Transl Med ; 4(4): 309-19, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25713465

RESUMO

Megakaryocytes (MKs) are rare hematopoietic cells in the adult bone marrow and produce platelets that are critical to vascular hemostasis and wound healing. Ex vivo generation of MKs from human induced pluripotent stem cells (hiPSCs) provides a renewable cell source of platelets for treating thrombocytopenic patients and allows a better understanding of MK/platelet biology. The key requirements in this approach include developing a robust and consistent method to produce functional progeny cells, such as MKs from hiPSCs, and minimizing the risk and variation from the animal-derived products in cell cultures. In this study, we developed an efficient system to generate MKs from hiPSCs under a feeder-free and xeno-free condition, in which all animal-derived products were eliminated. Several crucial reagents were evaluated and replaced with Food and Drug Administration-approved pharmacological reagents, including romiplostim (Nplate, a thrombopoietin analog), oprelvekin (recombinant interleukin-11), and Plasbumin (human albumin). We used this method to induce MK generation from hiPSCs derived from 23 individuals in two steps: generation of CD34(+)CD45(+) hematopoietic progenitor cells (HPCs) for 14 days; and generation and expansion of CD41(+)CD42a(+) MKs from HPCs for an additional 5 days. After 19 days, we observed abundant CD41(+)CD42a(+) MKs that also expressed the MK markers CD42b and CD61 and displayed polyploidy (≥16% of derived cells with DNA contents >4N). Transcriptome analysis by RNA sequencing revealed that megakaryocytic-related genes were highly expressed. Additional maturation and investigation of hiPSC-derived MKs should provide insights into MK biology and lead to the generation of large numbers of platelets ex vivo.


Assuntos
Albuminas/administração & dosagem , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Megacariócitos/efeitos dos fármacos , Receptores Fc/administração & dosagem , Proteínas Recombinantes de Fusão/administração & dosagem , Trombocitopenia/terapia , Trombopoetina/administração & dosagem , Plaquetas/efeitos dos fármacos , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Megacariócitos/transplante , Trombocitopenia/patologia , Transcriptoma/genética , Estados Unidos , United States Food and Drug Administration , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...